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Summary

Project Type:
Infrastructure and support

Goal:
Create development & debugging tools that enable a 
small team of spacecraft engineers to rapidly create 
high capability autonomy software

Status:
– Work focused on fault detection, identification & recovery
– Key goals achieved (but similar work needed for rest of 

agent)
– Project ending this year
– Proposals for two, smaller follow on tasks



Model-Based Programming
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• Build a mathematical system model:
Describe what the system can do (the artifact) separately from 
what you want it to do (the control policy)
– Greatly facilitates model reusability

• Analyze this model mechanically to find ‘goal’ behaviors, 
depending upon the analysis task
– Simplifies programming control code by accounting for the combinatorics

of component interactions
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Original Project Goals

1. A declarative, engineer-friendly model-based 
programming language

2. A visual model development environment
3. Tools for automatically generating test model 

procedures
4. Tools and processes for collaborative model 

development
5. Validation through a pair of autonomy 

experiments conducted by spacecraft engineers 
and university graduate students 



Goal 1. An Engineer-friendly Model-
based Programming Language

• Developed JMPL (Java-MPL)

• Object oriented, has a Java-based syntax

• Compiles model to XMPL format
– XML-based model interchange language used 

by Livingston & Northrup/Grumman RLV2 
team (spec available)

– proposed as a model interchange format for L2, 
Titan (Williams, MIT) and derivatives



Goal 2. A Visual Model Development Environment

• Stanley (initiated 
under RAX)

• Completed under 
Skunkworks

• Visual modeler

• Component Library

• Draw schematic

• Draw state machines 
describing individual 
components

• Add constraints as 
JMPL code fragments

System Modeling



Goal 2. A Visual Model Development Environment

• Invoke compiler with 
selected model JMPL 
code to generate 
XMPL code.

• Interactively with 
Scenario Mgr, or with 
editor, create test 
scenarios.

• Load XMPL model 
into Livingstone (L2).

• Use Scenario Mgr to 
send cmds to L2.

• Update Stanley display 
with L2 state.

• Interact with 
Candidate Mgr & 
History Table.

Scenario Debugging

PITEX GPU Parameter History Display Included in Livingston release



Goal 2. A Visual Model Development Environment

Finally started a reimplementation on a more maintainable foundation

• Available after Christmas
• Paid for by SLI



Goal 3. Tools for automatically generating
test procedures for models

• Shifted from test generation approach
to model-checking

• Two approaches
a.Translation of Livingstone model to a model-

checker (SMV)

b.Explicit search of execution traces using Java 
Pathfinder (Automated Software Engineering group at ARC)



a. From Livingstone Models
to SMV Models

• Developed by Charles Pecheur (Ames) and Reid Simmons 
(CMU)

• Similar nature => translation is easy
• Properties in temporal logic + pre-defined patterns
• Two generations: MPL (lisp) & JMPL (java)
• Supports model consistency check & limited forms of 

hazard analysis
• Experiments with ISPP (KSC)

– Huge state space (10^55) but tractable with SMV
– Exposed known and unknown modeling errors



• Can fault F be diagnosed knowing the last n steps
(assuming correct model and "perfect" engine)?

• Look for two sequences (of length n), one ending 
in F and not the other, that look identical to 
diagnosis (same commands and observables)

• Approach: use SAT solver to find them

a. Assessing Diagnosability
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b. Livingstone Pathfinder

• Start from conventional testing (the real program).
• Instrument the code to be able to do full model 

checking (or as close as possible).
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Continued under ECS



Goal 4. Tools and processes for 
collaborative model development

• Nothing special done

• We’re using standard tools like CVS, 
GNATS …



Goal 5. Validation

Customers:
• X-34 Experimental Reusable Launch Vehicle 

(NITEX/PITEX experiment)

• X-37 Experimental Reusable Launch Vehicle

• Honeywell and Interface Control Systems RLV2 
team

• Northrup/Grumman RLV2 team

All associated with NASA’s Space Launch Initiative



Efforts outside of
monitoring & diagnosis

• Plan library development tools (last 6 months)

– Designed and partially implemented new 
language for Europa (NDDL)

• Andrew Bachman, Jeremy Frank, Ari Jonsson

– Implemented ‘Potato’ visualization of the 
planning process (moving toward planning 
process visualization toolkit)

• Will Taylor



Efforts outside of
monitoring & diagnosis

• Rapid prototyping of autonomy testbeds
LiveInventor

dynamics +
kinematics +
collisions / friction +
integrated world modeling +
hybrid execution language

Charles Neveu,
Mark Shirley





NASA Relevance:

• Facilitate transition of model-based programming 
into a sustainable engineering practice

• Reduce flight software development costs; increase 
flight software robustness

Customers:
• X-34 Experimental RLV (NITEX/PITEX flight 

experiment)
• X-37 Experimental RLV
• Honeywell and Interface Control Systems RLV2 

team
• Northrup/Grumman RLV2 team

Goal: Create modeling and debugging tools for model-
based programming of autonomous systems

Work focused on monitoring, diagnosis & recovery 
portion of agent

Key Deliverables:
• Visual modeling language, more engineer-friendly 

textual syntax
• Application of formal V&V techniques to model-

based autonomy 
• Rapid prototyping of scenarios

A ModelA Model--Based Programming Skunk WorksBased Programming Skunk Works
Mark Shirley/ARCMark Shirley/ARC

Schedule:
• Project ending in FY02

Proposed next steps:
• Modeling and Debugging tools for Planning

• Simulation-based fault insertion testbed for K9 arm

• Model-checking work picked up by another R&D 
program



backups



Relationship to Mission Sim Facility

• Candidate for physics simulation

• Made sure it’s compatible with Viz

• Not just for rovers; PSA, etc



Livingstone Progress Summary
Monitoring (fault detection)

– Discrete dynamics
– Diagnostic cycle management (timeouts, overlapping commands)
– Hybrid dynamics
– Performance parameter estimation

Fault diagnosis
– Single hypothesis interface to rest of agent
– Multiple hypotheses interface to rest of agent
– Long-lead time diagnoses
– Information-gathering actions

Command sequence generation
– Safing
– Recoveries

Interaction with the ground
– Limited visibility of commands onboard
– Limited downlink bandwidth

Software engineering
– Integration with flight control software
– Process executed by a non-experimental design team 

Demonstrated
by RAX

Progress since
RAX
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Livingstone (L2) +
Skunkworks Flow Chart



FDIR for the International Space Station (ISS) using Model-based 
Reasoning (L2)

OBJECTIVES

• To develop model-based reasoning technology for  
FDIR of the Command and Data Handling (C&DH) 
subsystem of ISS.

APPROACH

• Three phases: 1) offline analysis of ISS data dumps, 2) 
realtime ground ops, 3) realtime ISS ops.

• Leverage  ISS Caution and Warning (C&W) system as 
monitors to L2 models.

• Model hardware: computers and buses.
• Model software: 1) memory locations as containers, 2) 

software functions as components whose ports are 
inputs/outputs of software, 3) qualitative rate 
monotonic scheduler.

BENEFITS
• Increase ISS safety and science at a time when ISS 

budgets are decreasing and loads on ISS C&DH are 
still increasing. 

• Provide foundation for IVHM – all subsystems use 
C&DH for sense/act – SLI will leverage ISS.

• Determine utility of using model-based reasoning to  
model software processes in conjunction with 
hardware. 
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MDM Module

MDM module is made up of collection components including PS, SX 
Backplane, I/O backplane, I/O Cards, SPD1553 Cards, IOCU card.
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